Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Aging Cell ; 23(4): e14096, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38475908

RESUMO

The epidermis is a stratified epithelium that forms the outer layer of the skin. It is composed primarily of keratinocytes and is constantly renewed by the proliferation of stem cells and their progeny that undergo terminal differentiation as they leave the basal layer and migrate to the skin surface. Basal keratinocytes rest on a basement membrane composed of an extracellular matrix that controls their fate via integrin-mediated focal adhesions and hemidesmosomes which are critical elements of the epidermal barrier and promote its regenerative capabilities. The distribution of basal cells with optimal activity provides the basement membrane with its characteristic undulating shape; this configuration disappears with age, leading to epidermal weakness. In this study, we present an in-depth imaging analysis of basal keratinocyte anchorage in samples of human skin from participants across the age spectrum. Our findings reveal that skin aging is associated with the depletion of hemidesmosomes that provide crucial support for stem cell maintenance; their depletion correlates with the loss of the characteristic basement membrane structure. Atomic force microscopy studies of skin and in vitro experiments revealed that the increase in tissue stiffness observed with aging triggers mechanical signals that alter the basement membrane structure and reduce the extent of basal keratinocyte anchorage, forcing them to differentiate. Genomic analysis revealed that epidermal aging was associated with mechanical induction of the transcription factor Krüppel-like factor 4. The altered mechanical properties of tissue being a new hallmark of aging, our work opens new avenues for the development of skin rejuvenation strategies.


Assuntos
Epiderme , Pele , Humanos , Membrana Basal/metabolismo , Epiderme/metabolismo , Queratinócitos , Matriz Extracelular/metabolismo
2.
PLoS Pathog ; 19(5): e1011368, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37155700

RESUMO

The bacterial human pathogen Helicobacter pylori produces a type IV secretion system (cagT4SS) to inject the oncoprotein CagA into gastric cells. The cagT4SS external pilus mediates attachment of the apparatus to the target cell and the delivery of CagA. While the composition of the pilus is unclear, CagI is present at the surface of the bacterium and required for pilus formation. Here, we have investigated the properties of CagI by an integrative structural biology approach. Using Alpha Fold 2 and Small Angle X-ray scattering, it was found that CagI forms elongated dimers mediated by rod-shape N-terminal domains (CagIN) prolonged by globular C-terminal domains (CagIC). Three Designed Ankyrin Repeat Proteins (DARPins) K2, K5 and K8 selected against CagI interacted with CagIC with subnanomolar affinities. The crystal structures of the CagI:K2 and CagI:K5 complexes were solved and identified the interfaces between the molecules, thereby providing a structural explanation for the difference in affinity between the two binders. Purified CagI and CagIC were found to interact with adenocarcinoma gastric (AGS) cells, induced cell spreading and the interaction was inhibited by K2. The same DARPin inhibited CagA translocation by up to 65% in AGS cells while inhibition levels were 40% and 30% with K8 and K5, respectively. Our study suggests that CagIC plays a key role in cagT4SS-mediated CagA translocation and that DARPins targeting CagI represent potent inhibitors of the cagT4SS, a crucial risk factor for gastric cancer development.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Proteínas de Bactérias/metabolismo , Antígenos de Bactérias/metabolismo , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo , Proteínas de Repetição de Anquirina Projetadas , Helicobacter pylori/metabolismo , Infecções por Helicobacter/microbiologia
3.
Am J Physiol Cell Physiol ; 323(6): C1807-C1822, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36374168

RESUMO

The epidermis is a specialized epithelium that constitutes the outermost layer of the skin, and it provides a protective barrier against environmental assaults. Primarily consisting of multilayered keratinocytes, the epidermis is continuously renewed by proliferation of stem cells and the differentiation of their progeny, which undergo terminal differentiation as they leave the basal layer and move upward toward the surface, where they die and slough off. Basal keratinocytes rest on a basement membrane at the dermal-epidermal junction that is composed of specific extracellular matrix proteins organized into interactive and mechanically supportive networks. Firm attachment of basal keratinocytes, and their dynamic regulation via focal adhesions and hemidesmosomes, is essential for maintaining major skin processes, such as self-renewal, barrier function, and resistance to physical and chemical stresses. The adhesive integrin receptors expressed by epidermal cells serve structural, signaling, and mechanosensory roles that are critical for epidermal cell anchorage and tissue homeostasis. More specifically, the basement membrane components play key roles in preserving the stem cell pool, and establishing cell polarity cues enabling asymmetric cell divisions, which result in the transition from a proliferative basal cell layer to suprabasal cells committed to terminal differentiation. Finally, through a well-regulated sequence of synthesis and remodeling, the components of the dermal-epidermal junction play an essential role in regeneration of the epidermis during skin healing. Here too, they provide biological and mechanical signals that are essential to the restoration of barrier function.


Assuntos
Células Epidérmicas , Epiderme , Epiderme/metabolismo , Membrana Basal/metabolismo , Queratinócitos/metabolismo , Derme , Diferenciação Celular/fisiologia
4.
Int J Mol Sci ; 23(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35742957

RESUMO

Syndecans act as independent co-receptors to exert biological activities and their altered function is associated with many pathophysiological conditions. Here, syndecan-1 and -4 were examined in lesional skin of patients with psoriasis. Immunohistochemical staining confirmed altered syndecan-1 distribution and revealed absence of syndecan-4 expression in the epidermis. Fibronectin (FN)-known to influence inflammation and keratinocyte hyperproliferation via α5ß1 integrin in psoriasis-was also decreased. Syndecan-1 and -4 expression was analyzed in freshly isolated lesional psoriatic human keratinocytes (PHK) characterized based on their proliferation and differentiation properties. mRNA levels of syndecan-1 were similar between healthy and PHK, while syndecan-4 was significantly decreased. Cell growth and release of the pro-inflammatory Tumor Necrosis Factor-alpha (TNFα) were selectively and significantly induced in PHKs plated on FN. Results from co-culture of healthy keratinocytes and psoriatic fibroblasts led to the speculation that at least one factor released by fibroblasts down-regulate syndecan-1 expression in PHK plated on FN. To assay if biological treatments for psoriasis target keratinocyte proliferation, gelatin-based patches enriched with inteleukin (IL)-17α or TNFα blockers were prepared and tested using a full-thickness healthy epidermal model (Phenion®). Immunohistochemistry analysis showed that both blockers impacted the localisation of syndecan-1 within the refined epidermis. These results provide evidence that syndecans expression are modified in psoriasis, suggesting that they may represent markers of interest in this pathology.


Assuntos
Psoríase , Sindecana-4 , Epiderme/metabolismo , Humanos , Queratinócitos/metabolismo , Psoríase/patologia , Sindecana-1/genética , Sindecana-1/metabolismo , Sindecana-4/genética , Sindecana-4/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
5.
PLoS Pathog ; 18(4): e1010458, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35395062

RESUMO

Two-component regulatory systems (TCS) are among the most widespread mechanisms that bacteria use to sense and respond to environmental changes. In the human pathogen Streptococcus pneumoniae, a total of 13 TCS have been identified and many of them have been linked to pathogenicity. Notably, TCS01 strongly contributes to pneumococcal virulence in several infection models. However, it remains one of the least studied TCS in pneumococci and its functional role is still unclear. In this study, we demonstrate that TCS01 cooperates with a BceAB-type ABC transporter to sense and induce resistance to structurally-unrelated antimicrobial peptides of bacterial origin that all target undecaprenyl-pyrophosphate or lipid II, which are essential precursors of cell wall biosynthesis. Even though tcs01 and bceAB genes do not locate in the same gene cluster, disruption of either of them equally sensitized the bacterium to the same set of antimicrobial peptides. We show that the key function of TCS01 is to upregulate the expression of the transporter, while the latter appears the main actor in resistance. Electrophoretic mobility shift assays further demonstrated that the response regulator of TCS01 binds to the promoter region of the bceAB genes, implying a direct control of these genes. The BceAB transporter was overexpressed and purified from E. coli. After reconstitution in liposomes, it displayed substantial ATPase and GTPase activities that were stimulated by antimicrobial peptides to which it confers resistance to, revealing new functional features of a BceAB-type transporter. Altogether, this inducible defense mechanism likely contributes to the survival of the opportunistic microorganism in the human host, in which competition among commensal microorganisms is a key determinant for effective host colonization and invasive path.


Assuntos
Peptídeos Antimicrobianos , Farmacorresistência Bacteriana , Regulação Bacteriana da Expressão Gênica , Streptococcus pneumoniae , Peptídeos Antimicrobianos/farmacologia , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/genética , Escherichia coli/metabolismo , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Peptídeos/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo
6.
mSystems ; 7(1): e0048821, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35103489

RESUMO

The spread of antibiotic-resistant Acinetobacter baumannii poses a significant threat to public health worldwide. This nosocomial bacterial pathogen can be associated with life-threatening infections, particularly in intensive care units. A. baumannii is mainly described as an extracellular pathogen with restricted survival within cells. This study shows that a subset of A. baumannii clinical isolates extensively multiply within nonphagocytic immortalized and primary cells without the induction of apoptosis and with bacterial clusters visible up to 48 h after infection. This phenotype was observed for the A. baumannii C4 strain associated with high mortality in a hospital outbreak and the A. baumannii ABC141 strain, which was isolated from the skin but was found to be hyperinvasive. Intracellular multiplication of these A. baumannii strains occurred within spacious single membrane-bound vacuoles, labeled with the lysosomal associate membrane protein (LAMP1). However, these compartments excluded lysotracker, an indicator of acidic pH, suggesting that A. baumannii can divert its trafficking away from the lysosomal degradative pathway. These compartments were also devoid of autophagy features. A high-content microscopy screen of 43 additional A. baumannii clinical isolates highlighted various phenotypes, and (i) the majority of isolates remained extracellular, (ii) a significant proportion was capable of invasion and limited persistence, and (iii) three more isolates efficiently multiplied within LAMP1-positive vacuoles, one of which was also hyperinvasive. These data identify an intracellular niche for specific A. baumannii clinical isolates that enables extensive multiplication in an environment protected from host immune responses and out of reach of many antibiotics. IMPORTANCE Multidrug-resistant Acinetobacter baumannii isolates are associated with significant morbidity and mortality in hospitals worldwide. Understanding their pathogenicity is critical for improving therapeutic management. Although A. baumannii can steadily adhere to surfaces and host cells, most bacteria remain extracellular. Recent studies have shown that a small proportion of bacteria can invade cells but present limited survival. We have found that some A. baumannii clinical isolates can establish a specialized intracellular niche that sustains extensive intracellular multiplication for a prolonged time without induction of cell death. We propose that this intracellular compartment allows A. baumannii to escape the cell's normal degradative pathway, protecting bacteria from host immune responses and potentially hindering antibiotic accessibility. This may contribute to A. baumannii persistence, relapsing infections, and enhanced mortality in susceptible patients. A high-content microscopy-based screen confirmed that this pathogenicity trait is present in other clinical A. baumannii isolates. There is an urgent need for new antibiotics or alternative antimicrobial approaches, particularly to combat carbapenem-resistant A. baumannii. The discovery of an intracellular niche for this pathogen, as well as hyperinvasive isolates, may help guide the development of antimicrobial therapies and diagnostics in the future.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Anti-Infecciosos , Humanos , Acinetobacter baumannii/genética , Incidência , beta-Lactamases/genética , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Infecções por Acinetobacter/tratamento farmacológico , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia
7.
J Biomed Mater Res A ; 110(4): 797-811, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34793629

RESUMO

Currently, there is a lack of models representing the skin dermal heterogeneity for relevant research and skin engineering applications. This is the first study reporting production of dermal equivalents reproducing features of papillary and reticular dermal compartments. Inspired from our current knowledge on the architecture and composition differences between the papillary and reticular dermis, we evaluated different collagen-based porous materials to serve as scaffolds for the three-dimensional expansion of freshly isolated papillary and/or reticular fibroblasts. The scaffolds, composed of either collagen I or collagen I and III mixtures, were prepared by lyophilization. Pore size and hydrolytic stability were controlled by crosslinking with 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) or EDC/NHS with covalently bound heparin. The evaluation of the resultant "papillary" and "reticular" dermal equivalents was based on the analysis of characteristic features of each dermal compartment, such as cell density and deposition of newly synthetized extracellular matrix components in histological sections. Crosslinking supported cell growth during dermal tissue formation independent on the fibroblast subpopulation. The presence of collagen III seemed to have some positive but non-specific effect only on the maintenance of the mechanical strength of the scaffolds during dermal formation. Histological analyses demonstrated a significant and specific effect of heparin on generating dermal equivalents reproducing the respective higher papillary than reticular cell densities and supporting distinct extracellular matrix components deposition (three to five times more carbohydrate material deposited by papillary fibroblasts in all scaffolds containing heparin, while higher collagen production was observed only in the presence of heparin).


Assuntos
Derme , Heparina , Colágeno/metabolismo , Colágeno Tipo I/metabolismo , Derme/patologia , Fibroblastos/metabolismo , Heparina/farmacologia , Humanos , Engenharia Tecidual/métodos , Tecidos Suporte
8.
J Proteomics ; 251: 104397, 2022 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-34678517

RESUMO

A striking feature of skin organization is that the extracellular matrix (ECM) occupies a larger volume than the cells. Skin ECM also directly contributes to aging and most cutaneous diseases. In recent years, specific ECM enrichment protocols combined with in silico approaches allowed the proteomic description of the matrisome of various organs and tumor samples. Nevertheless, the skin matrisome remains under-studied and protocols allowing the efficient recovery of the diverse ECM found in skin are still to be described. Here, we compared four protocols allowing the enrichment of ECM proteins from adult mouse back skin and found that all protocols led to a significant enrichment (up to 65%) of matrisome proteins when compared to total skin lysates. The protocols based on decellularization and solubility profiling gave the best results in terms of numbers of proteins identified and confirmed that skin matrisome proteins exhibit very diverse solubility and abundance profiles. We also report the first description of the skin matrisome of healthy adult mice that includes 236 proteins comprising 95 core matrisome proteins and 141 associated matrisome proteins. These results provide a reliable basis for future characterizations of skin ECM proteins and their dysregulations in disease-specific contexts. SIGNIFICANCE: Extracellular matrix proteins are key players in skin physiopathology and have been involved in several diseases such as genetic disorders, wound healing defects, scleroderma and skin carcinoma. However, skin ECM proteins are numerous, diverse and challenging to analyze by mass spectrometry due to the multiplicity of their post-translational modifications and to the heterogeneity of their solubility profiles. Here, we performed the thorough evaluation of four ECM enrichment protocols compatible with the proteomic analysis of mouse back skin and provide the first description of the adult mouse skin matrisome in homeostasis conditions. Our work will greatly facilitate the future characterization of skin ECM alterations in preclinical mouse models and will inspire new optimizations to analyze the skin matrisome of other species and of human clinical samples.


Assuntos
Matriz Extracelular , Proteômica , Animais , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/análise , Espectrometria de Massas , Camundongos , Proteômica/métodos , Pele/metabolismo
9.
Trends Mol Med ; 27(10): 1000-1013, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34389240

RESUMO

Tumor extracellular matrix (ECM) operates in a coordinated mode with cancer and stroma cells to evoke the multistep process of metastatic potential. The remodeled tumor-associated matrix provides a point for direct or complementary therapeutic targeting. Here, we cover and critically address the importance of ECM networks and their macromolecules in cancer. We focus on the roles of key structural and functional ECM components, and their degradation enzymes and extracellular vesicles, aiming at improving our understanding of the mechanisms contributing to tumor initiation, growth, and dissemination, and discuss potential new approaches for ECM-based therapeutic targeting and diagnosis.


Assuntos
Matriz Extracelular , Neoplasias , Matriz Extracelular/metabolismo , Humanos , Neoplasias/metabolismo
10.
J Tissue Eng Regen Med ; 15(1): 37-48, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33170542

RESUMO

Clinical grade cultured epithelial autograft (CEA) are routinely used to treat burns covering more than 60% of the total body surface area. However, although the epidermis may be efficiently repaired by CEA, the dermal layer, which is not spared in deep burns, requires additional treatment strategies. Our aim is to develop an innovative method of skin regeneration based on in situ 3D bioprinting of freshly isolated autologous skin cells. We describe herein bioink formulation and cell preparation steps together with experimental data validating a straightforward enzyme-free protocol of skin cell extraction. This procedure complies with both the specific needs of 3D bioprinting process and the stringent rules of good manufacturing practices. This mechanical extraction protocol, starting from human skin biopsies, allows harvesting a sufficient amount of both viable and growing keratinocytes and fibroblasts. We demonstrated that a dermis may be reconstituted in vitro starting from a medical grade bioink and mechanically extracted skin cells. In these experiments, proliferation of the extracted cells can be observed over the first 21 days period after 3D bioprinting and the analysis of type I collagen exhibited a de novo production of extracellular matrix proteins. Finally, in vivo experiments in a murine model of severe burn provided evidences that a topical application of our medical grade bioink was feasible and well-tolerated. Overall, these results represent a valuable groundwork for the design of future 3D bioprinting tissue engineering strategies aimed at treating, in a single intraoperative step, patients suffering from extended severe burns.


Assuntos
Bioimpressão , Queimaduras , Células Imobilizadas , Fibroblastos , Queratinócitos , Impressão Tridimensional , Tecidos Suporte/química , Animais , Queimaduras/metabolismo , Queimaduras/patologia , Queimaduras/terapia , Células Imobilizadas/metabolismo , Células Imobilizadas/patologia , Células Imobilizadas/transplante , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/transplante , Xenoenxertos , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Queratinócitos/transplante , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus
11.
Biomolecules ; 10(12)2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33260936

RESUMO

One of the most important functions of skin is to act as a protective barrier. To fulfill this role, the structural integrity of the skin depends on the dermal-epidermal junction-a complex network of extracellular matrix macromolecules that connect the outer epidermal layer to the underlying dermis. This junction provides both a structural support to keratinocytes and a specific niche that mediates signals influencing their behavior. It displays a distinctive microarchitecture characterized by an undulating pattern, strengthening dermal-epidermal connectivity and crosstalk. The optimal stiffness arising from the overall molecular organization, together with characteristic anchoring complexes, keeps the dermis and epidermis layers extremely well connected and capable of proper epidermal renewal and regeneration. Due to intrinsic and extrinsic factors, a large number of structural and biological changes accompany skin aging. These changes progressively weaken the dermal-epidermal junction substructure and affect its functions, contributing to the gradual decline in overall skin physiology. Most changes involve reduced turnover or altered enzymatic or non-enzymatic post-translational modifications, compromising the mechanical properties of matrix components and cells. This review combines recent and older data on organization of the dermal-epidermal junction, its mechanical properties and role in mechanotransduction, its involvement in regeneration, and its fate during the aging process.


Assuntos
Membrana Basal/metabolismo , Epiderme/metabolismo , Envelhecimento da Pele , Humanos , Queratinócitos/metabolismo
12.
Sci Signal ; 13(639)2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32636307

RESUMO

Bone morphogenetic protein 1 (BMP-1) is an important metalloproteinase that synchronizes growth factor activation with extracellular matrix assembly during morphogenesis and tissue repair. The mechanisms by which BMP-1 exerts these effects are highly context dependent. Because BMP-1 overexpression induces marked phenotypic changes in two human cell lines (HT1080 and 293-EBNA cells), we investigated how BMP-1 simultaneously affects cell-matrix interactions and growth factor activity in these cells. Increasing BMP-1 led to a loss of cell adhesion that depended on the matricellular glycoprotein thrombospondin-1 (TSP-1). BMP-1 cleaved TSP-1 between the VWFC/procollagen-like domain and the type 1 repeats that mediate several key TSP-1 functions. This cleavage induced the release of TSP-1 C-terminal domains from the extracellular matrix and abolished its previously described multisite cooperative interactions with heparan sulfate proteoglycans and CD36 on HT1080 cells. In addition, BMP-1-dependent proteolysis potentiated the TSP-1-mediated activation of latent transforming growth factor-ß (TGF-ß), leading to increased signaling through the canonical SMAD pathway. In primary human corneal stromal cells (keratocytes), endogenous BMP-1 cleaved TSP-1, and the addition of exogenous BMP-1 enhanced cleavage, but this had no substantial effect on cell adhesion. Instead, processed TSP-1 promoted the differentiation of keratocytes into myofibroblasts and stimulated production of the myofibroblast marker α-SMA, consistent with the presence of processed TSP-1 in human corneal scars. Our results indicate that BMP-1 can both trigger the disruption of cell adhesion and stimulate TGF-ß signaling in TSP-1-rich microenvironments, which has important potential consequences for wound healing and tumor progression.


Assuntos
Proteína Morfogenética Óssea 1/metabolismo , Proteólise , Trombospondina 1/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Proteína Morfogenética Óssea 1/genética , Adesão Celular , Linhagem Celular Tumoral , Humanos , Trombospondina 1/genética , Fator de Crescimento Transformador beta/genética , Xenopus laevis
13.
Matrix Biol ; 94: 1-17, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32621878

RESUMO

Re-epithelialization describes the resurfacing of a skin wound with new epithelium. In response to various stimuli including that of growth factors, cytokines and extracellular matrix (ECM), wound edge epidermal keratinocytes undergo cytoskeleton rearrangements compatible with their motile behavior and develop protrusive adhesion contacts. Matrix metalloproteinases (MMP) expression is crucial for proper cell movement and ECM remodeling; however, their deposition mechanism is unknown in keratinocytes. Here, we show that similar to cytokine IL-1ß, the precursor laminin 332 pro-migratory fragment G45 induces expression of the MMP-9 pro-enzyme, which together with MMP-14, further exerts its proteolytic activity within epithelial podosomes. This event strictly depends on the expression of the proteoglycan receptor syndecan-1 that was found in a ring surrounding the podosome core, co-localised with CD44. Our findings uncover that by directly recruiting both syndecan-1 and CD44, the laminin-332 G45 domain plays a major role in regulating mechanisms underlying keratinocyte / ECM remodeling during wound repair.


Assuntos
Moléculas de Adesão Celular/genética , Receptores de Hialuronatos/genética , Sindecana-1/genética , Cicatrização/genética , Moléculas de Adesão Celular/antagonistas & inibidores , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Epitélio/crescimento & desenvolvimento , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Queratinócitos/efeitos dos fármacos , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , RNA Interferente Pequeno/farmacologia , Cicatrização/efeitos dos fármacos
14.
Semin Cancer Biol ; 62: 149-165, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31639412

RESUMO

Laminin 332 is crucial in the biology of epithelia. This large extracellular matrix protein consists of the heterotrimeric assembly of three subunits - α3, ß3, and γ2 - and its multifunctionality relies on a number of extracellular proteolytic processing events. Laminin 332 is central to normal epithelium homeostasis by sustaining cell adhesion, polarity, proliferation, and differentiation. It also supports a major function in epithelial tissue formation, repair, and regeneration by buttressing cell migration and survival and basement membrane assembly. Interest in this protein increased after the discovery that its expression is perturbed in tumor cells, cancer-associated fibroblasts, and the tumor microenvironment. This review summarizes current knowledge regarding the established involvement of the laminin 332 γ2 chain in tumor invasiveness and discusses the role of its α3 and ß3 subunits.


Assuntos
Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Matriz Extracelular/metabolismo , Neoplasias/etiologia , Neoplasias/metabolismo , Transdução de Sinais , Animais , Fibroblastos Associados a Câncer/metabolismo , Adesão Celular , Moléculas de Adesão Celular/antagonistas & inibidores , Moléculas de Adesão Celular/química , Movimento Celular , Células Epiteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Queratinócitos , Terapia de Alvo Molecular , Neoplasias/patologia , Neoplasias/terapia , Domínios e Motivos de Interação entre Proteínas , Microambiente Tumoral , Cicatrização/genética
15.
Adv Drug Deliv Rev ; 146: 344-365, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-29981800

RESUMO

Cutaneous wound healing in adult mammals is a complex multi-step process involving overlapping stages of blood clot formation, inflammation, re-epithelialization, granulation tissue formation, neovascularization, and remodelling. Re-epithelialization describes the resurfacing of a wound with new epithelium. The cellular and molecular processes involved in the initiation, maintenance, and completion of epithelialization are essential for successful wound closure. A variety of modulators are involved, including growth factors, cytokines, matrix metalloproteinases, cellular receptors, and extracellular matrix components. Here, we focus on cellular mechanisms underlying keratinocyte migration and proliferation during epidermal closure. Inability to re-epithelialize is a clear indicator of chronic non-healing wounds, which fail to proceed through the normal phases of wound healing in an orderly and timely manner. This review summarizes the current knowledge regarding the management and treatment of acute and chronic wounds, with a focus on re-epithelialization, offering some insights into novel future therapies.


Assuntos
Citocinas/metabolismo , Hormônios/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , RNA Interferente Pequeno/farmacologia , Dermatopatias/terapia , Cicatrização/efeitos dos fármacos , Adulto , Animais , Humanos , Dermatopatias/metabolismo , Dermatopatias/patologia , Engenharia Tecidual
16.
Matrix Biol ; 75-76: 12-26, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29330022

RESUMO

The ability of skin to act as a barrier is primarily determined by cells that maintain the continuity and integrity of skin and restore it after injury. Cutaneous wound healing in adult mammals is a complex multi-step process that involves overlapping stages of blood clot formation, inflammation, re-epithelialization, granulation tissue formation, neovascularization, and remodeling. Under favorable conditions, epidermal regeneration begins within hours after injury and takes several days until the epithelial surface is intact due to reorganization of the basement membrane. Regeneration relies on numerous signaling cues and on multiple cellular processes that take place both within the epidermis and in other participating tissues. A variety of modulators are involved, including growth factors, cytokines, matrix metalloproteinases, cellular receptors, and extracellular matrix components. Here we focus on the involvement of the extracellular matrix proteins that impact epidermal regeneration during wound healing.


Assuntos
Matriz Extracelular/genética , Pele/crescimento & desenvolvimento , Cicatrização/genética , Ferimentos e Lesões/genética , Membrana Basal/crescimento & desenvolvimento , Membrana Basal/metabolismo , Movimento Celular/genética , Células Epidérmicas , Matriz Extracelular/patologia , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Reepitelização , Transdução de Sinais/genética , Pele/lesões , Ferimentos e Lesões/patologia
17.
Exp Dermatol ; 27(5): 537-543, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29603432

RESUMO

Ageing is a complex multifaceted process affecting skin functionality and structure. Several 3D organotypic skin culture models have reproduced ageing by inducing replicative senescence, glycation or oxidative stress. Yet, very few models have focused on hormonal ageing and especially the insulin-like growth factor 1 (IGF-1) signalling pathway, which has been associated with longevity in animal studies and is necessary for the early stages of skin development. In this study, we built an organotypic epidermis model with targeted IGF-1 receptor knockdown to reproduce some aspects of hormonal ageing on skin. Our model displayed morphological and functional features of aged epidermis, which were mostly attributed to a loss of function of the Stratum basale. IGF-1 receptor knockdown keratinocytes depicted an extended cell cycle, reduced proliferation potential and reduced adhesion capacities and greater sensitivity to oxidative stress than control cells. Altogether, this model represents an essential tool for further investigations into the mechanisms linked to some aspects of hormonal decline or when screening for potent anti-ageing compounds.


Assuntos
Epiderme , Técnicas In Vitro , Fator de Crescimento Insulin-Like I/metabolismo , Queratinócitos/metabolismo , Modelos Biológicos , Envelhecimento da Pele , Adulto , Idoso , Adesão Celular , Proliferação de Células , Feminino , Humanos , Estresse Oxidativo , Interferência de RNA , Receptor IGF Tipo 1/genética , Transdução de Sinais
18.
Cell Transplant ; 27(2): 264-274, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29637812

RESUMO

Total bilateral limbal stem cell deficiency leading to loss of corneal clarity, potential vision loss, pain, photophobia, and keratoplasty failure cannot be treated by autologous limbal transplantation, and allogeneic limbal transplantation requires subsequent immunosuppressive treatment. Cultured autologous oral mucosal epithelial cells have been shown to be safe and effective alternatives. These cells can be transplanted on supports or without support after detachment from the culture dishes. Dispase, known for epidermal sheet detachment, is reported as not usable for oral mucosa. The objective was to find an optimized detachment method providing a sufficiently resistant and adhesive cultured oral mucosal epithelium (COME), which can be grafted without sutures. Enzymatic treatments (dispase or collagenase at different concentrations) were compared to enzyme-free mechanical detachment. Histological immunofluorescence (IF) and Western blotting (WB) were used to examine the impact on adhesion markers (laminin-332, ß1-integrin, and type VII collagen) and junctional markers (E-cadherin, P-cadherin). Finally, the COME ability to adhere to the cornea and produce a differentiated epithelium 15 d after grafting onto an ex vivo porcine stroma model were investigated by histology, IF, and transmission electron microscopy. Collagenase at 0.5 mg/mL and dispase at 5 mg/mL were selected for comparative study on adhesive expression marker by IF and WB showed that levels of basement membrane proteins and cell-cell and cell-matrix junction proteins were not significantly different between the 3 detachment methods. Collagenase 0.5 mg/mL was selected for the next step validation because of the better reproducibility, 100% success (vs. 33% with dispase 5 mg/mL). Grafted onto porcine de-epithelialized corneal stroma, collagenase 0.5 mg/mL detached COME were found to adhere, stratify, and continue to ensure renewal of the epithelium. For COME, collagenase 0.5 mg/mL enzymatic detachment was selected and validated on its resistance and adhesive marker expression as well as their anchorage onto our new ex vivo de-epithelialized stroma model.


Assuntos
Membrana Basal/citologia , Limbo da Córnea/patologia , Mucosa Bucal/citologia , Células-Tronco/citologia , Animais , Membrana Basal/ultraestrutura , Células Cultivadas , Doenças da Córnea/terapia , Humanos , Microscopia Eletrônica de Transmissão , Mucosa Bucal/ultraestrutura , Transplante de Células-Tronco/métodos , Células-Tronco/ultraestrutura , Suínos
19.
Aging (Albany NY) ; 9(11): 2302-2315, 2017 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-29176034

RESUMO

Skin is constantly exposed to environmental factors such as pollutants, chemicals and ultra violet radiation (UV), which can induce premature skin aging and increase the risk of skin cancer. One strategy to reduce the effect of oxidative stress produced by environmental exposure is the application of antioxidant molecules. Among the endogenous antioxidants, selenoproteins play a key role in antioxidant defense and in maintaining a reduced cellular environment. Selenium, essential for the activity of selenoproteins, is a trace element that is not synthesized by organisms and must be supplied by diet or supplementation. The aim of this study is to evaluate the effect of Selenium supplementation on skin aging, especially on keratinocytes, the main cells of the epidermis. Our results demonstrate for the first time to our knowledge, the major role of Selenium on the replicative life span of keratinocytes and on aging skin. Selenium protects keratinocyte stem cells (KSCs) against senescence via preservation of their stemness phenotype through adhesion to the basement membrane. Additionally, Selenium supplementation maintains the homeostasis of skin during chronological aging in our senescent skin equivalent model. Controlled supplementation with Selenium could be a new strategy to protect skin against aging.


Assuntos
Antioxidantes/farmacologia , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Epiderme/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Envelhecimento da Pele/efeitos dos fármacos , Selenito de Sódio/farmacologia , Células-Tronco/efeitos dos fármacos , Membrana Basal/efeitos dos fármacos , Membrana Basal/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Epiderme/metabolismo , Humanos , Queratinócitos/metabolismo , Fenótipo , Células-Tronco/metabolismo , Fatores de Tempo
20.
FEBS J ; 284(23): 4143-4157, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29055076

RESUMO

The more severe strains of the bacterial human pathogen Helicobacter pylori produce a type IV secretion system (cagT4SS) to inject the oncoprotein cytotoxin-associated gene A (CagA) into gastric cells. This syringe-like molecular apparatus is prolonged by an external pilus that exploits integrins as receptors to mediate the injection of CagA. The molecular determinants of the interaction of the cagT4SS pilus with the integrin ectodomain are still poorly understood. In this study, we have used surface plasmon resonance (SPR) to generate a comprehensive analysis of the protein-protein interactions between purified CagA, CagL, CagI, CagY repeat domain II (CagYRRII ), CagY C-terminal domain (CagYB10 ) and integrin α5ß1 ectodomain (α5ß1E ) or headpiece domain (α5ß1HP ). We found that CagI, CagA, CagL and CagYB10 but not CagYRRII were able to interact with α5ß1E with affinities similar to the one observed for α5ß1E interaction with its physiological ligand fibronectin. We further showed that integrin activation and its associated conformational change increased CagA, CagL and CagYB10 affinities for the receptor. Furthermore, CagI did not interact with integrin unless the receptor was in open conformation. CagI, CagA but not CagL and CagYB10 interacted with the α5ß1HP . Our SPR study also revealed novel interactions between CagA and CagL, CagA and CagYB10 , and CagA and CagI. Altogether, our data map the network of interactions between host-cell α5ß1 integrin and the cagT4SS proteins and suggest that activation of the receptor promotes interactions with the secretion apparatus and possibly CagA injection.


Assuntos
Proteínas de Bactérias/metabolismo , Helicobacter pylori/metabolismo , Integrina alfa5beta1/metabolismo , Mapeamento de Interação de Proteínas/métodos , Sistemas de Secreção Tipo IV/metabolismo , Animais , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Células CHO , Cricetinae , Cricetulus , Helicobacter pylori/genética , Humanos , Integrina alfa5beta1/química , Integrina alfa5beta1/genética , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Ressonância de Plasmônio de Superfície , Sistemas de Secreção Tipo IV/química , Sistemas de Secreção Tipo IV/genética , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...